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A Mixture of Viscous Elastic Materials

with Different Constituent Temneratures

* +

R. E. Craine, A. E. Green and P. M. Naghdi++

Abstract. Constitutive equations are discussed for a mixture of any
number of materials with elastic and viscous properties in which the
constituents may have different temperatures.

1. Introduction

The recent literature on the continuum theory of mixtures contains

rather diverse points of view in the primitive concepts and the forms

of the basic field equations. The basic equations representing balances

of masses, linear momenta, moments of momenta, and energy for each con-

stituent together with equations for the mixture as a whole obtained by

summation, as developed by Truesdell [1,2], Truesdell and Toupin 13] and

a number of other writers are closely related and are based on similar

points of view. O the other hand, the development of the theory by

Green and Naghdi [4] and Mills 15] is based on different primitive con-

2epts and consequently some of their resulting equations have different

forms from thoseý in '1,3]. However, in a recent paper confined to mix-

tures with a single temperature, the differences and the relationship

between the two approaches have been clarified by Green and Naghdi [6]:
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The basic equations in the two developments are equivalent, although

this is riot apparent at first sight in the case of some of the equa-

tions -- the differences lie chiefly in the primitive concepts, the

premise under which the twc forms of the theory are leveloped, in

addition to the interpretation- a3sociated with some of the quantities

which occur in the equations. For further detail regarding the relation-

ship between the two forms of the theory, as well as additional references

on the subject, we refer the reader to [6].

In the present paper, we are concerned with a mixture of any number

of constituents each of which is at a different temperature. Since we

now regard the previous paper of Green and Naghdi [7] involving many

temperatures as too restrictive, we first reconsider here the forms of

the basic equations, as well as the entropy inequality for the mixture

as a whole. Although the discussion of the basic equations in sections

3-5 involves some repetition of known results, it is included here in

order to have the basic equations in line with our point of view [6]

and in terms of variables which we believe provide simple interpretations

when discussing constitutive equations.

In section 6, we first briefly outline two procedures for the dis-

cussion of constitutive equations and adopt the simpler of the two which

is slightly more restrictive than the other. We then consider a mixture

of v constituents (with different temperatures) which are not necessarily

gases and which have viscous and elastic properties. In particular, we

In [6], Green and Naghdi have given a different interpretation to the
internal energy in the energy equation used by them in [41 and have
recast this equation in a slightly different form.
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obtain explicit results for the "equilibrium" values of various quantities

and also include a discussion of the results when all constituents have

the same temperature.

ii
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2. Notation

We summarize relevant notation for kinematic quantities and density.

We consider a mixture of v interacting constituents, each of which is

th
regarded as a continuum; we refer to the e constituent as the continuum

s (a= 1,2,..,v) . We assume that each point within the mixture is

occupied simultaneously by all v constituents, which are in motion

relative to a fixei system of rectangular Cartesian axes. The position

of a typical particle of s at time T is denoted by xi(T) , where

xi(T) a xi(xl, x' , x3, T) (--<¶t) (2.1)

and X. is a reference position of the particles of s . All Latin

indices are tensor indices and take the values 1,2,3, and the usual

summation convention is employed. The Greek letter a , as in (2.1), is

th
reserved for reference to the a constituent of the mixture only. Unless

indicated otherwise the summation convention does not apply to Greek

indices. We use the notation

X x=(t) , (2.2)

assume that the particles of s (a=1,2,..,v) all occupy the same

position at time t so that

1 2 vx.=x.= = x.=x. (2.3)

and we refer to this position at time t as x.

4.



The velocity vectors at the point x. in s at time t are given1

by

cea
a D x.,

v(i = Dt (a= 1,2,.. ,v) (2.4)

where D/Dt denotes differentiation with respect to t holding Xk

fixed in continuum s This operator may be written in the form

D a a 73 (2.5)
DT TT v axk

Acceleration vectors at time t are

of a af a
a D v, av . a ý

Dt v 9 v vkX (a= 1,2, ,IV) , (2.6)

the densities of s at time t are p and the rates of deformation

and vorticit./ tensors for s at time t are given by

2 d v v I 2Wa 1 (2.7)
ik i,k k,i ' ik i,k -k,i 2

where a comma stands for partial differentiation with respect to x.

We define total density p and mean velocity vi by the expressions

V
P P (2.8)

pvi - 0 vi (2.9)
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and pit

u. v. - v. (2.10)1 1 1

so that

V
E p u.=0 o (2.11)

We also define the operator

D)(- + vk (2.12)
Dt ýt k axk '

ani observe that

D D V a ( v D (S(2.1-3)
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: 3. Mass and momentum

Using a fixed surface A enclosing an arbitrary volume V the

.quation of mass balance for sis (3.

V A V

where m is density of' mass production arising from all the other

constituents and n k is the unit outward normal to A , Hence

01

Mo = "a~- (P VC D = +PdC (3.2)S•t ýxk VYk) P 0dkk

and wý add the condition

E m =0 (3.3)

Next we consider the equation of linear momentum for s in the

form

Alternatively we could use material volume elements of each constituent
which coincide at time t

I7



t P vi dV + p vi vk nk dA nv. iAV

V A V

J(p Ft + piaV + an k dA (3.4)
Of . ~ kki

V A

where Fa is external body force applied to s and is tt.e stress

tensor+ associated with the ingredient s so that the total force
a
a

acting on s aacross A per unit area is nk aki The term involving

A01
v. is similar to that used by Ingram and Eringen [8] and allows for the

fact that momentum is supplied to s not from rest but from all the

Aa
other constituents of the mixture with some mean velocity v. which

wili depend on all the velocities of the remaining constituents, but it

is not necessary to make any special assumption about this. The vector

p. may now be called a aiffusive force acting on s In addition to

(3.4) we impose the condition

a A01
z (PiY , m vi) = 0 (3.5)Y= 1i of

In point form equation (3.4) becomes

a (Fi - f' ' v- P m v (3.i-)
kik + Pa i 1 a v -p o i

and we assume that p, is a vector unaltered by superposed rigid body

motions of the whole mixture, apart from orientation. For convenience

we say that p. is objective but other writers give this word a slightly

++Truesdell and Toupin 131 use a different order for the indices on the
stress tensor which, in general, is not symmetric.
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4ifferent meaning. Professor Chadwick has suggested that (3.6) be put

"n % more convenient form

+ C(F-f) + mr u. (3.7)

k.'nre 1. is oeje tiwK f

r= v -v + u. , -0 (3.8)
C - i 1 O 1 =i

rom (3.7) an-J (3.8) we r'cover the equations of motion for the mixture

a whole. Thus

Z a . (F>"f -FE M v. 0 o (3.9)

: • (3 .1o).,i 1=1 ki

Corresponding to (3.4) ie postulate a moment of momentum equation

L. 0 (3.11)

,,nre eijk is the alternnting tonsor and

9.



I

Lij a-t V i j dA JV i J

- Fý+Pi)xj dV - JA n ki x. dA - J dV (3.12)

In (3.12) Xa. is a skew symmetric tensor which may be called the dif-

fusive couple acting on s . With the help of (3.6), equation (3.11)

yields

U of (3 .1 3 )
CT[ki I - ki

where 0t[ki is the skew symmetric part of oki " We add the condition

z :ka -o (3.li•)
al kki

so that

'[ki] 0 (3.15)
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, Tncrgy balance and entropy production for mixture

Before discussing energy balance equations for each constituent

S we obtain the energy equation for the mixture. We assume that

(p U C p v. va)dV

(p 0 U + 1 d A

_ Z U + p Vk vi vi)n. dA
+ A a=l C f2C

J (pr + 7 p Fa v')dvJ (+ t v -h)dA , (1.l)
V CI=l VA A=l

where we take

V

ti n. C D h=n q q qk ' pr=Z p r , (4.2)k I ka=l

q being the heat flux vector for s and qk the heat flux vector

for the mixture, r is heat supply per unit mass of s , per unit

4 time, including the heat supply arising from all other constituents, with r

the total heat supply per unit mass of the mixture; the internal heat supplies

will be specified by constitutive equations but do not affect the value of

r in (4.2)4. Also U is internal energy of s per unit mass, allowing for

interaction between s and the other constituents. With the help of (3.7)

the point form of (4.1) becomes

v DU
pr - qk,k Di(p 4-+÷ m U)

+ ( P C v ! a ! +! a C 1 + a 0! ) 0!( 3
- v 40k i - u uV = (.

Ot=l



SSince

v DIJ

C Dt + m )U a p + (4.4)

where

VV
Sp U a (P U.) (4.5)

a~~l a a 1 'Xk a

equation (4.3) has the alternative form

CY a 1 a. l)
pr ~k~-u - + Z(~Vi+k.v +e- m U~ u) . 4)

=i Pki i'k 2 a 1

We adopt an entropy inequality for the mixture which is equivalent

to one used by Truesdell [2], namely

p S adV + pa vk SC, nk dA

a
E T dV + E -- k dA , 0 (4.7)

V =1 a Aa=l a

where T (> 0) is the temperature of the constituent s and S is

its entropy per unit mass. In point form (4.7) becomes

v D S v pr v qV
Dt + S)- a + (Y) k - (4.8)

a=l a=l a a=l a

12.



Except when all the temperaturesare equal we cannot develop the

consequence of the inequality (4.8) with the help only of (4.3). We

need energy equations for each constituent so as to be able to eliminate

r fram (4.8) and also to provide sufficient equations for the tempera-

tures T (a=- ,..,v) We consider this in the next section.

i
13.
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5. Energy balance for each constituent

Recalling quantities defined in previous sections we postulate an

energy balance for s in the form

lY 1 Act Acyp- p•(+ vivi)dV + p (U + v vi)vk Q n cA - m v v dVV A o t2i kJV i i

JV (P(r-+ FP vi) + pi vi + a Wk1 ) dV

+ At' VA

The scalar * represents a volume contribution to the energy equation

arising fromn interaction, in addition to interactions already considered,

and nk qk represents an interaction surface flow of energy with qk

an interaction flux vector. However, in point form this vector contributes

q which can be absorbed into • , so without loss of generality we

set q = 0 . The constituent s has a mass increase acquired from the

other constituents and the rate of change of its kinetic energy just

before becoming a part of s is represented by the third group of

terms in (5.1). All other quantities in (5.1) have been defined pre-

viously and follow naturally from the discussion of sections 3,4.

Equation (5.1) can be reduced to

14.



r D U a 0 a Ae
S a+ m Ue +P( Fi )vi + m vi vi mofvi v. dV

Se v a dV + (tov-nk qa)dA (5.2)( Pofp vi+ i ki 'ik+ a 11z +

A1 e Ae a' a 0 at
z + m v. v pv. Xk W )=o-3

a=1 % ÷kvi vi + i i ki ik

and if we also use ( 4 .2), then by summation of equations (5.2) we find

thiat

v DU Ua_V Fiie CYaaO
j [Pa D + m U - par+P(f Fi)vi +7 V. v+ _ dV

V Of=1

Etvi - Nq)d (5.4)

jA ce=l

Equation ( 5 .4) iz the same as ( 4 .1) and with the help of (3.7) we recover

the point form (4.3).

Using (3.8), as ,rell as (3.13) and (3.3), equation (5.3) reduces to

at= a at 1) 1 (5.5
a= v i + Y[ ki]1wik + 2 m 7',u i 1 Ta (5)

where

1 Acy ay A

t = a + 2 m vi - v ) i vi) (5.6)

Also, with the help of (3.7), (3.13) and (5.6), the point form of (5.2)

15.



be omes

- DU aa a a
qkrk- 0a Dt-E m- + (ki)djk +'i • 057

a Cwhere a .)is the symmetric part of a The arbitrary functions
C(ki) ki

Sare subject to the condition (5.5). It is desirable to simplify

this condition and one way to achieve this is to put+

T* =~( ~ + k Of mf U. .vV) +~jw~ a o a (5.8)(Y Il i(vi-vi + '[ki]('ik-'ik) +7 m.r ul Ili + @ 5

so that

V

E E = 0 (5.9)
=l a

and (5.7) becomes

DU
at D 1o a afp r - qk,k P1 -D- - m U + mo u. u. + c

+ Vaa-v +a da at af V =010+ i(v-v) + (kiik + [ki](wik-w ik) 0(5.10)

We observe that for some purposes it is useful to replace the v equations

(5.10) by an equivalent set, namely equation (4.3) and the v-1 equations

This is not the only possible form for V . For example, the first

terms in (5.8) could be replaced by pi (v vi) the difference being

absorbed in e , but (5.8) is more convenient for our purpose.

16.



C1 v

DU DUpr r k,k qk,k - =t p - mU + m UDt aa v

1 or a1 ) ve (V CY VadO
2 " V i 1 (ki)A

Cm ud +i C inF (5u-11)e% i~iv) (k~

- (ki) dik + 0 [ki](wik- ik)= 0 (5.11)

ae a at ae lin equation (5.10) the functions U , e , m are all

objective.

If we eliminate r from ( 4 .8) with the help of (5.10) we obtain

the inequality

vDA DT

+2 a (I [ti+vS-vi)+Y(ki)dikyA of lmik- , k)] a=l T2

a•=l

where

A U U - T S (5.13)

The inequality (5.12) may be written in an alternative form which is

useful for some purposes. Since

17.

!'



7pat DA DT mA

a=i at aa

v 0 A mA p A D T
= ( + + 7) (S + )-- -j
nf=l Ot Dt T• 01 TO f C t

a *

DA V P Uk A v S DT 8 TDA ) k a +• Of (•ce+ a-'Y (5.14)
+Dt " - T T--
a=1 k a C1 a k

where

.A v pA+:= (5.15)
a a=-1 a

the inequality (5.12) be2omes

DA v f Sn DT Of v 1
- t =l T Dt 2 m• , ( m ui +I

vf= puA Vq
S-(a Uk An •k T~k- q) T2

T1 a 
2 

%, aa 
a

£T [ (vivi) + a(ki)dik [ki](ik.wik) _a=1 a

where

q = qk +P p Tn o (5.17)

We observe that

18.



Ot
V PC uk A v .• v = t

E T E 01(v k- v k E OctvkOf=l of Ot=lO=Cr a=l

(5.18)
A v

00t= P (--Z-) E aC1 C=

Hence, if we put

4 T - -+ P. (01 ,..,v-1) a IO 8 C +ki+ (+=i, ,o), (5.19)
(YXT i ki aakki""

the inequality (5.16) reduces to

*
DA v P aS DT ofv 1 1 t a

-t =i T C Dt (= or

+ T (- Pi(vi - vi) + '(ki) dik+ '[ki](Wik- 'ik)I

v qk Tk
- E -_: 0 ,(5.20)

a= 1 T

and

%) V-i ) -(
V V1 C1 -of

Pi = - E , [ki] 0-0(5.21)

For later convenience we introduce the notation

e 1 60( Vl vvy rr W (.2
C= T ' A a v "k k k ik ik ik (5.22)

zo that (5.20) becomes

19.



EA = Po~e DO 1mV 1
Dt + 0 Dtor+mti +

+ (e + tC) (pi v + CT(i k+ [i~

arf~i

20.



-onctitutive equations

We assume that mass elements of each constituent are conserved

ro that

m = 0 ,(6.1)

tnhat thý constituents of the mixture have elastic and viscous

Lroverties. We therefore assume that A S, q0 (ay=l,..,v),

a • (a= ,..,v-i), are functions of+

F x.= 2 x0

' i j ýX. 0 i jk BX0• a

j ~(6.2)

OB,k ' k

ani

vý (6.3)ik '

for O= 1,..,v , y=l,..,v-l . In view of invariance conditions under

superposed rigid body motions of the whole mixture, the velocity

gradients mist be replaced by

dý rY (6.4)
ik (.ik

These constitutive equations satisfy equipresence which we regard as a
mathematical convenience and not a physical principle.

21.l



If we use the inequality (J'.12) to obtain restrictions on these constitu-

tive assumptions, it can be shown that A depends only on

T• , Uj.5)

In addition, further restrictions are placed on A and other dependent

functions, but there is some algebraic complexity in making explicit

deductions about the form of A from these restrictions.

Inspection of (5.20) suggests an alternative procedure. We assume

the A , S (and hence A, S, 0 - , .. ,), -1_
a 'a(ki) k Pk

'[ki]' Oy (a= i,..,v-i) are functions of the variables (6.2) and (6.4).

From the inequality (5.20) we again find that A depends only on the

variables (6.5). From (5.17), (5.18) and (5.19) we see that qa and

. are functions of the variables (6.2) and (6.4), but that pa are

functions of

ijk dB 9
MO ik,r ' ik,r

r

as well as the variables (6.2) and (6.4). If we add the additional

k should depend only on the quantities (6.2) and

(6.4), it follows that 0 reduce to functions of the variables

Using (5.18)2 and the fact that A is u function of the quantities

(6.5), it follows that A reduce to functions of the variables (6.6).

22.



.;ýstri-tions on the remaining constitutive equations may now be found

from (5.1t), (5b1g, (5.2m) or (5.23), and we use (5.23). This procedure

• :rTears to be slightly more restrictive than the first and is the one

• ijortect here,

We aqopt the notation

dik' riko (A= 1,..,16v-7) , (6.7)

and we put

Ca = oak + e~ki

-ae --a -a1Cki = oaki elki

a a a
@k o~k +e k

-Of -a -0-• -• -•(6.8)
k= o~k + ek (6

q k = oqk + eq k

qk o q k + eqk

a. 08a +ec-a

where the quantities with a prefix 0 are the values of the corresponding

quantities on the left hand side of (6.8) when YA = 0 . The remaining

terms in (6.8) may be regarded as polynomials of degree greater than zero

in the functions YA with coefficients which are functions of the remaining

variables in (6.2).

23.



With the help of (5.20) we have

P AS =pA - (6.9)

so that

v v pb

p os e of of e3 T = 1T T (6=0

Also, we write

V

A A'+ A" A A. + A" pA= 8 Z p A' (6.11)

where A' are the values of A when , and A is the

SI 
vanish,

value of A when A- vanishes. For the present we regard A" as a
0 a

polynomial of degree greater than zero in V., and A" as a

polynomial of degree greater than zero in with coefficients which

are functions of 8 , . The result (6.11)3 follows from (5.15)2.

Again, using (5.23), we have

-a 5A-- at6.)

oaki = O 6Fý. Fkj 
(6.12)

ij

I~ = - Z (Pr G - PO G Lr--- ) (6.13)
- iij Yý Bij Xk

for a=l,..,v provided

24.



SAF's Fi ) 0 (6.14)
CY=l BA k

ikj

Also

0 0 P =0 , = (6.15)

In •adition there is a residual inequality which we omit. From (5.18),

(5.19), (6.12) and (6.13) we then have

a ai FP F
0 ki ý •k P 0j (6.16)

J ij

ýLk 1 a ir ao ý'Fijr bx o

in igreeraent with previous results [9].

The above constitutive equations are subject to the usual invariance

conditions under superposed rigid body motions of the whole mixture.

7or example, A , A reduce to the new forms

*8x• a X xr,

AI =A (0" rt r (6.18)of Y .6kx r

ax rx

A A ( 'B • -? (6.19)
J

ii

for cr,$=l..,v ,Y=1,..,v-,•. In view of (6.19) we may verify that

the condition (6.14) is satisfied. 4

In obtaining the above constitutive equations, we have adopted the

second procedure described earlier in this section [after (6.5)]. We
25.



note that if we had used the first method, we would still recover the

results (6.9), (6.12), (6.13), (6.16) and (6.17) with A' being the
CV

"equilibrium" values of A , i.e., the values of A when YA vanish.

The special case of the formulae (6.10) when all the temperatures

are equal is of some interest. In order to see what happens to (6.10)

we write

e A e -e = (C=l,..,v-1) , (6.20)

then

(6.21)

and

V-
1

LS + E . (6.22)
a=l Be a C1.

The functions A may be expressed in the form

A O(f~ V", A, A ) - (6.23)

When

A 0 (Y= ,..,V-l) , A- l/T , (6.24)

where T is the common temperature of the constituents, we assume that

A A *(F. T) (6.25)A0 - A(ijk

26.



. -. .. - (6.26)
A2 T

It will not, in general, be possible to evaluate 6A /6AV as & Y 0

in terms of the function A and we assume that these derivatives are
• +

replaced by arbitrary finite scalar functions. From (6.10) and (6.21)

we see that under the condition (6.24),

V V 2 BA~EPS=E62PEPOa (6.27)

or, defining

V * V

PS=E PS , pA E POA (6.28)

then

- 6A-- (6.29)

as given previously [6,81. Also S -S become arbitrary functions of
SV

"F VV, T not expressible in terms of AO , which again agrees with a

previous result [9]. We recall that the energy equations, which provide

v differential equations for the v temperatures T , may be taken to

be ( 4 .3) and the v-1 equations (5.11), and we observe that volume supplies

of heat may be taken to be given by the v independent quantities

This is analagous to the procedure used in the passage from a compressible
to an incompressible elastic material.

27.
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V
pr E=Z pre , pr• - p Vr (V=l,..,v-l) (6.30)

When temperatures reduce to a single temperature we have one equation

(4.3) for this. The remaining equations (5.11) can then, in general,

only be satisfied by appropriate choices for the heat supplies

p r - p r . This is similar to the situation in which we can, in

general, only maintain isothermal conditions with T constant by an

appropriate choice of r

Special cases of the results (6.16) and (6.17) may be obtained

without difficulty. For example, if constitutive equations depend on

the deformation gradients Fý. only through the densities p, , then
13

a V

Oaki - =ki £ I (6.31)

01 Vp MX
opk E • (P • 01 -x P B ape x- Y (6 .32)

as found previously [6]. These results are appropriate for a mixture of

viscous fluids.
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